Samsung Innovation Campus: Artificial intelligence

Course Objectives

- Understand the foundational math behind data science and machine learning: linear algebra, probability and statistics.
- Be able to do data preprocessing with the Python libraries (NumPy and Pandas) for the execution of optimal machine learning models and data visualization.
- Explore supervised and unsupervised learning and be able to apply the most suitable machine learning algorithm.
- Learn to process textual data to derive high quality information from text and apply new insights to real-world business (NLP)
- Build and train deep neural networks, use the deep learning libraries such as TensorFlow and Keras to gain proficiency, as well as handle various deep learning techniques.

Course Breakdown

\checkmark Lecture (270hrs.) + Capstone project(80hrs.)
\checkmark Lecture covers most subject areas in general concepts of each technology.
\checkmark Focuses on building fundamental capabilities of AI modeling on a concrete foundation of mathematics, including linear algebra, probability and statistics.
$\checkmark \quad$ Introduces A to Z in Machine Learning tools, from NumPy to Keras, and techniques including CNN and practice with hands-on exercises.
\checkmark Offers 80 hours of real-world problem-solving experience as a capstone project, handling open-source data with participants' own AI

Course Content	Duration
Chapter 1. Introduction to Artificial Intelligence	4 H
- Unit 1. The Concept of Artificial Intelligence	1 H
- Unit 2. Applications of Artificial Intelligence	1 H
- Unit 3. Techniques in Artificial Intelligence	1 H
- Unit 4. Artificial Intelligence: Trends and Markets	1 H
- Unit 5. Course Roadmap	33 H
Chapter 2. Math for Data Science	3 H
- Unit 1. Introduction	7 H
- Unit 2. Basic Math for Data Science	7 H
- Unit 3. Understanding Data Science: Vector	7 H
- Unit 4. Understanding Data Science: Matrix	7 H
- Unit 5. Understanding Deep Learning: Derivatives	2 H
- Quiz	33 H
Chapter 3. Exploratory Data Analysis: NumPy Arrays for Optimized Numerical Computation and Pandas	7 H
- Unit 1. NumPy Array Data Structurefor Optimal	
Computational Performance	8 H
- Unit 2. Optimal Data Exploration Through Pandas	8 H
- Unit 3. Pandas Data Preprocessing for Optimal Model	8 H
Execution	2 H
- Unit 4: Data Visualization for Various Data Scales	

Chapter 4. Probability and Statistics	33H
- Unit 1. Understanding of Probability	7 H
- Unit 2. Understanding of Statistics I	8 H
- Unit 3. Understanding of Statistics II	8 H
- Unit 4. Statistical Hypothesis Testing	8 H
- Quiz	2 H
Chapter 5. Machine Learning 1-Supervised Learning	37H
- Unit 1. Machine Learning Based Data Analysis	4 H
- Unit 2. Application of Supervised Learning Model for Numerical Prediction	4 H
- Unit 3. Application of Supervised Learning Model for Classification	4 H
- Unit 4. Decision Tree	4 H
- Unit 5. Naïve Bayes Algorithm	4 H
- Unit 6. KNN Algorithm	5 H
- Unit 7. SVM Algorithm	5 H
- Unit 8. Ensemble Algorithm	5 H
- Quiz	2 H
Chapter 6. Machine Learning 2 - Unsupervised Learning	33 H
- Unit 1. Unsupervised Machine Learning Algorithm	7 H
- Unit 2. Hierarchical Clustering	8 H
- Unit 3. Non-Hierarchical Clustering	8 H
- Unit 4. Linear Factor Model for Dimensionality Reduction	8 H
- Quiz	2 H
Chapter 7. Natural Language Processing and Language Models for Text Mining	33 H
- Unit 1. Text Mining	7H
- Unit 2. Text Preprocessing	8 H
- Unit 3. Language Model	8 H
- Unit 4. Natural Language Processing with Keras	8 H
- Quiz	2 H
Chapter 8. Neural Network and Deep Learning	32H
- Unit 1. Basics of Neural Network	10H
- Unit 2. Basics of TensorFlow	10H
- Unit 3. Deep Learning Methods using TensorFlow and Keras	10H
- Quiz	2 H
Chapter 9. Various Deep Learning Topics	32H
- Unit 1. CNN Model	10H
- Unit 2. RNN for Sequential Data Modeling	10H
- Unit 3. Generative Adversarial Neural Network to Create NonExistent Images	10H
- Quiz	2 H
Total Class Hours	270 H

Course Assessment:

The scoring assessments of the students will follow the below criteria:

Criteria	Weight
Quiz $-\quad$ Quiz will be placed at the end of each chapter $-\quad$ Approximately 5 ~ 10 questions per quiz	40%
Capstone Project $-\quad$ Project is measured based on the quality of final product, presentation and teamwork	60%
Participation $-\quad$ Participation is measured by the instructor throughout the course	$+\alpha$
Total	100%

Certification:

The students will be eligible for a certification when both qualifications below are met.

Qualification	Cut-off Rate
1. Attendance higher than	90%
2. Total grade for assessment higher than	50%
Certified when both qualifications are met	-

