Samsung Innovation Campus: Artificial intelligence

Course Objectives

- Understand the foundational math behind data science and machine learning: linear algebra, probability and statistics.
- Be able to do data preprocessing with the Python libraries (NumPy and Pandas) for the execution of optimal machine learning models and data visualization.
- Explore supervised and unsupervised learning and be able to apply the most suitable machine learning algorithm.
- Learn to process textual data to derive high quality information from text and apply new insights to real-world business (NLP)
- Build and train deep neural networks, use the deep learning libraries such as TensorFlow and Keras to gain proficiency, as well as handle various deep learning techniques.

Course Breakdown

- ✓ Lecture + Capstone Project
- ✓ Lecture covers most subject areas in general concepts of each technology.
- ✓ Focuses on building fundamental capabilities of AI modeling on a concrete foundation of mathematics, including linear algebra, probability and statistics.
- ✓ Introduces A to Z in Machine Learning tools, from NumPy to Keras, and techniques including CNN and practice with hands-on exercises.
- ✓ Offers real-world problem-solving experience as a capstone project, handling open-source data with participants' own AI

Lecture Guide

Course Content		
Week 1: Introduction to Artificial Intelligence		
Unit 1: The Concept of Artificial Intelligence		
Unit 2: Applications of Artificial Intelligence		
Unit 3: Techniques in Artificial Intelligence		
Unit 4: Artificial Intelligence: Trends and Markets		
Unit 5: Course Roadmap		
Week 2: Math for Data Science		
Unit 1: Introduction		
Unit 2: Basic Math for Data Science		
Unit 3: Understanding Data Science: Vector		
Unit 4: Understanding Data Science: Matrix		
Unit 5: Understanding Deep Learning: Derivatives		
Quiz		
Week 3: Exploratory Data Analysis: NumPy Arrays for Optimized Numerical		
Computation and Pandas		
Unit 1: NumPy Array Data Structure for Optimal Computational Performance		
Unit 2: Optimal Data Exploration Through Pandas		
Unit 3: Pandas Data Preprocessing for Optimal Model Execution		
Unit 4: Data Visualization for Various Data Scales		
Quiz		
Week 4: Probability and Statistics		
Unit 1: Understanding of Probability		

Unit 2: Understanding of Statistics I
Unit 3: Understanding of Statistics II
Unit 4: Statistical Hypothesis and Testing
Quiz
Week 5: Machine Learning 1 – Supervised Learning
Unit 1: Machine Learning Based Data Analysis
Unit 2: Application of Supervised Learning Model for Numerical Prediction
Unit 3: Application of Supervised Learning Model for Classification
Unit 4: Decision Tree
Unit 5: Naïve Bayes Algorithm
Unit 6: KNN Algorithm
Unit 7: SVM Algorithm
Unit 8: Ensemble Algorithm
Quiz
Week 6: Machine Learning 2 – Unsupervised Learning
Unit 1: Unsupervised Machine Learning Algorithm
Unit 2: Hierarchical Clustering
Unit 3: Non-Hierarchical Clustering
Unit 4: Linear Factor Model for Dimensionality Reduction
Quiz
Week 7: Natural Language Processing and Language Models for Text Mining
Unit 1: Text Mining
Unit 2: Text Preprocessing
Unit 3: Language Model
Unit 4: Natural Language Processing with Keras
Quiz
Week 8: Neural Network and Deep Learning
Unit 1: Basics of Neural Network
Unit 2: Basics of TensorFlow
Unit 3: Deep Learning Methods using TensorFlow and Keras
Quiz
Week 9: Various Deep Learning Topics
Unit 1: CNN Model
Unit 2: RNN for Sequential Data Modeling
Unit 3: Generative Adversarial Neural Network to Create Non-Existent Images
Capstone Project Guide

Capstone Project Action Plan

Action Planning
WBS Planning
Preliminary Presentation
Presentation
Presentation (45th at)
Prototyping & Testing (1 st iteration)
Data Wrangling
Modeling
Testing
Prototype Presentation
Presentation
Presentation
Prototyping & Testing (2 nd iteration)
Data Wrangling
Modeling
Testing
Prototyping & Testing (2 nd iteration)
Data Wrangling
Modeling
Testing
Final Presentation
Final Report Creation
Presentation
Final Presentation

Course Assessment:

The scoring assessments of the students will follow the below criteria:

Criteria	Weight
Quiz	40 %
 Quiz will be placed at the end of each week 	
 Approximately 5 ~ 20 questions per quiz 	
Capstone Project	60 %
 Project is measured based on the quality of final product, presentation and teamwork 	
Participation	+α
- Participation is measured by the instructor throughout the course	
Total	100%

Certification:

The students will be eligible for a certification when both qualifications below are met.

	Qualification	Cut-off Rate
1. Attend	dance higher than	90 %

2. Total grade for assessment higher than	50 %
► Certified when both qualifications are met	-