High Level Design Document

AI Course

Version	Change Details	Date
1.0	Initial document (complete version)	12-18-2019
1.1	Chapter updated	1-06-2020

Course Brief

Торіс	AI (Artificial Intelligence) Course
Course	E-learning format: 12-13 weeks (total 240 hours total synchronous and
Schedule	asynchronous learning)
	- Online Lecture & Exercise: 10 weeks
	- Capstone Project: 2 weeks (plus pitching week)
Learning	Online Learning
Environment	- e-learning platform for content delivery and virtual classroom,
	- slack for student support,
	- zoom for capstone pitching
	 PC (students will have their own)
	- Minimum: Windows 8 + CPU i5 + RAM 8GB
	- Recommended: Windows 10 + CPU i7-8700 3.19 GHz + RAM 16GB +
	NVidia GPU 1660 Ti
Learning	Understand the basic concept of Probability, Statistics, and Linear Algebra that
Objectives	is fundamental to learn how to build AI
	Understand the basic concept of Python and use Python to complete real-
	world coding exercises
	Be able to implement AI (Machine Learning + Deep Learning) with related
	packages and learn its application to solve real-world problems
	Understand the landscape of data science tools and their applications, and
	will be prepared to identify and dig into new technologies and algorithms
	needed for the job at hand
	Have a fluid understanding of, and practical experience with, the process of
	designing, implementing, and communicating the results of an AI project
Course	Coding Experience
Prerequisites	- Prior experiences in learning one of Object-oriented Language
	(e.g. Java, JavaScript, C++, etc.)
	- A basic level understanding of grammar in Object-oriented Language
	Basic Statistics
	- Understanding of probability and statistics fundamentals
	- A proper document certifies candidate's completion of relevant courses
	should be presented when a candidate submits an application form
Audience &	 Target
Characteristics	- Youth (age 18~35), interested in pursuing a career in AI, who need the
	appropriate education for the career
	 Official Target for SIC program will follow the given charactertistic.

However, actual participants will mainly consist of undergraduate
students in STEM major and a few graduate students within the
given age range because secondary school graduates will barely
meet prerequisites given above
Characteristics
- Educational background: successfully completed high school level STEM
courses or higher education
- Level for understanding: possess basic knowledge in programming and
statistics
- Expectations: expects to obtain necessary knowledge and skills for entry-
level job placement in AI field

Course Information

• Lecture and Exercise (2 months)

Course Contents	Duration
Chapter 1. Introduction to Artificial Intelligence	
- Unit 1. The Concept of Artificial Intelligence	-
- Unit 2. Applications of Artificial Intelligence	

-	Unit 3. Trends in Artificial Intelligence	
-	Unit 4. Course Roadmap	
Chapte	r 2. Python Programming	24H
		(total)
-	Unit 1. Python I	3.5H
-	Unit 2. Python II	4.5H
-	Unit 3. Python III	4H
-	Unit 4. Python IV	4H
-	Unit 5. Python V	5.5H
-	Quiz	2.5H
Chapte	r 3. Python Libraries	22H
		(total)
-	Unit 1. NumPy Package	5.5H
-	Unit 2. Pandas Package	8.5H
-	Unit 3. Visualization	5.5H
-	Quiz	2.5H
Chapte	r 5. Machine Learning – Part I	16H
		(total)
-	Unit 1. Data Preprocessing	1.5H
-	Unit 2. Unsupervised Learning	5H
-	Unit 3. Regression	6.5H
-	Quiz	3H
Chapte	r 6. Machine Learning – Part II	17H
		(total)
-	Unit 4. Classification Prediction (Basic)	6H
-	Unit 5. Classification Prediction (Advanced)	5.5H
-	Quiz	5.5H
Chapte	r 7. Machine Learning – Part III	21H
		(total)
-	Unit 6. Natural Language Processing	14H
-	Unit 7. Image Processing	5.5H
-	Quiz	1.5H
Chapte	r 8. Deep Learning – Part I	18H
		(total)

- Unit 1. Introduction to Deep Learning	9H
- Unit 2. Deep Learning Various Topics	7H
- Quiz	2H
Chapter 9. Deep Learning – Part II	16H
Chapter 9. Deep Learning – Part II	16H (total)
Chapter 9. Deep Learning – Part II - Unit 3. Deep Learning with Keras	16H (total) 14H

Capstone Project (1 month)

Course Contents	
Chapter 10. Starting an AI Project	3H
	(total)
- Project Preparation	0.5H
- Design Thinking	2.5H
Chapter 11. AI Capstone Project Tutorial	2H
	(total)
- Using a Ready-Made CNN Model.	1H
- AI Application Cases.	1H
※ During the capstone project, student's project activities take more time than	75H
lecture itself. Please expect up to 80 hours to complete the whole project	

Weekly Agenda

Time	~ 2 months	1 month
1.5 hours	Theory Lecture Weekly	 Theory
1.5 Hours	 Practice and Problem Solving Lecture weekly 	 Practice

1.5 Hours	 Student Quiz 	 Testing

Plus – take home weekly exercises which the students spend can spent 2+ hours per week doing depending on their personal learning.

When we begin Capstone – the students will be developing their projects and attending:

- 1. Ideation sessions to discuss their capstone ideas
- 2. Practice sessions to practice their project pitches
- 3. Final Capstone Pitch

Assessment

	Criteria	Weight
Quiz		40 %
-	Quiz will be placed at the end of each chatper	
-	Approximately 5 ~ 10 questions per quiz	
Capstone Project		60 %
-	Project is measured based on the quality of final	
	product, presentation and teamwork	
Parti	cipation	+α
-	Participation is measured by the instructor throughout	
	the course	
Tot	al	100%

Certification

Qualification	Cut-off Rate
1. Attendance higher than	90 %
2. Total grade for assessment higher than	50 %
 Certified when both qualifications are met 	-

Course Details

Chapter	Details	Duration
1	Chapter 1. Introduction to AI	
	Objective: Get to know what AI is about, its concept, and trends. Then learn	
	overall roadmap of the AI course	
	Unit 1. The Concept of Artificial Intelligence	-
	Unit 2. Applications of Artificial Intelligence	
	Unit 3. Trends in Artificial Intelligence	
	Unit 4. Course Roadmap	
	Chapter 2. Python Programming	
	Objective: Get familiar with Jupyter notebook environment, learn how to apply	24H
	Python programming for practical use, and learn how to implement basic level	(Total)
	of task automation	
	Unit 1. Python I	3.5H
	About Python Programming Language	
	Jupyter Notebook	
	Unit 2. Python II	4.5H
	Basic Data Types (int, float, bool, str)	
2	Composite Data Types (list, tuple, dictionary, set)	
2	Mutable and Immutable Data Types	
	Unit 3. Python III	4H
	Control Structures (if-else-elseif, for, while).	
	 File I/O, Object Oriented Programming, 	
	Modules, Exception Handling	
	Unit 4. Python IV	4H
	Binary Search, Palindrome, Stack and Queue Data Structure, etc.	
	Unit 5. Python V	5.5H
	Handling/Controlling/Extracting Data from Excel, Word, PDF documents	
	Quiz	2.5H
	Chapter 3. Python Libraries	
	Objective: Acquire detailed knowledge regarding application of Numpy and	22日
	Pandas package that are essential for implementing AI. Be capable of	(Total)
2	generating insight through data wrangling and data visualization, and of	(Total)
3	conducting exploratory data analysis	
	Unit 1. NumPy Package	5.5H
	Array, Vector, Matrix, Simple Linear Algebra	
	Unit 2. Pandas Package	8.5H

	Series, DataFrame, Data Retrieval and Query	
	Data Summarization, Aggregation, Pivoting	
	Data Wrangling Methods	
	Unit 3. Visualization	5.5H
	Visualization using Matplotlib and Pandas	
	Visualization using Seaborn	
	Exploratory Data Analysis	
	Quiz	2.5H
5	Chapter 5. Machine Learning – Part I	1011
	Objective: Be capable of conducting data analysis by using Cluster Analysis and	16H (Tetel)
	Linear Regression	(Total)
	Unit 1. Data Preprocessing	1.5H
	Machine learning with Scikit-Learn	
	Pre-processing. Feature Engineering	
	Unit 2. Unsupervised Learning	5H
	Unsupervised Learning with Scikit Learn, DBSCAN	
	Clustering, PCA, Dimensional Reduction	
	Unit 3. Regression	6.5H
	Linear Regression: Train, Predict and Evaluate	
	Linear Regression: Modeling, Dummy Variables, Interactions	
	Regularization methods: Lasso and Ridge	
	Polynomial and Poisson Regression	
	Quiz	3H
	Chapter 7. Machine Learning – Part II	4711
6	Objective: Be capable of conductin data analysis by using Classification	17H
	Prediction	(Total)
	Unit 4. Classification Prediction (Basic)	6H
	Logistic Regression, Naïve Bayes, KNN, SVM, Statsmodels	
	Unit 5. Classification Prediction (Advanced)	5.5H
	• Ensemble Algorithms: Tree, Random Forest, Ada Boost, XGBoost (optional).	
	Quiz	5.5H
	Chapter 7. Machine Learning – Part III	
	Objective: Understand basic Text mining and learn how to train machine to	21H
7	understand natural language via Supervised and Unsupervised learning and l	(Total)
	earn how to conduct Image Processing with OpenCV package.	
	Unit 6. Natural Language Processing	14H
	Pre-Processing Text Data. Extracting Insight from Text Data	
	Stemming, Lemmatization, POS, Stopwords	

	 N-Gram, BOW, TF-IDF, Word2Vec Models 	
	 Matrix Decomposition. Topic Modeling: LSA, LDA 	
	Classification with Natural Language Models	
	Unit 7. Image Processing	5.5H
	Pixel Manipulation, Filtering, Blurring, Dilation, Erosion	
	Thresholding, Contour Detection, Edge Detection, Feature Detection	
	Quiz	1.5H
	Chapter 8. Deep Learning – Part I	1011
	Objective: Be capable of implementing a variety of deep learning models by	IðH (Tatal)
	using TensorFlow deep learning package	(Total)
	Unit 1. Introduction to Deep Learning	9H
	Manipulating Tensors with TensorFlow	
	Single Layer Neural Networks for Regression and Classification	
•	Multilayer Neural Networks. Forward and Back Propagation.	
8	Batch Training. Weight Initialization	
	Unit 2. Deep Learning Various Topics.	7H
	Convolution, Pooling, Dropout, Regularization	
	Convolution Network Applied to Image Classification	
	RNN/LSTM	
	Explore GAN. AutoEncoder for Dimensional Reduction	
	Quiz	2H
9	Chapter 9. Deep Learning – Part II	1011
	Objective: Acquire essential skill sets to independently explore and implement	
	deep learning with Keras package	(Total)
	Unit 1. Deep Learning with Keras.	14H
	Sequential Model. Compilation. Training and Evaluation	
	Keras Layers. Batch Training	
	Quiz	2H