Implications of mmW to Communications Systems Design & Test Oct 2016

© 2016 Keysight Technologies, Inc.

5G : Cellular Revolution

The new activity for 5G Systems Engineers

How many beams? How wide at each end of the link? How dynamic – spatial, power, temporal, frequency?

mmWave ≠ 10x RF

		-		
Frequency range	6-20 GHz	20-40 GHz	40-60 GHz	60-100 GHz
Specific bands identified	10 GHz band 10.125-10.225 GHz 10.475–10.575 GHz	32 GHz band 31.8-33.4 GHz	40 GHz band 40.5-43.5 GHz '45 GHz' band 45.5-48.9 GHz	66 GHz band 66-71 GHz
Potential bandwidth	2 x 100 MHz	1.6 GHz	5.8 GHz total	5 GHz

Large available bandwidth at mmWave

Source: Ofcom, Apr 2015

Path loss can be mitigated by high gain directional antennas

High path loss due to atmospheric absorption

mmWave geometry allows for very small, high gain antennas

© 2016 Keysight Technologies, Inc.

Averaging the channel in space – good or bad?

Spaghetti junction: Averaged in 2D there are many interconnected routes, in the reality of 3D there are very few

So how should we model the mmWave channel?

Ground bounce Ground bounce Diffraction Path loss Path loss Narrow beams Polarization SIES 0 2016 Keysight Technologies, Inc.

Keysight 60 GHz channel sounder with 2 GHz real-time bandwidth University of Bristol in mmMAGIC project

Corner diffraction study <u>ftp.3gpp.org/tsg_ran/WG1_RL1/TSGR1_84b/Docs/R1-162872.zip</u>

How well do 60 GHz signals bend round corners?

Corner diffraction measurements

They don't!

25 dB signal loss in just 10 cm of travel

At these frequencies propagation is quasioptical

Now you see me, now you don't

KEYSIGHT TECHNOLOGIES

Surface scattering measurement setup

Mixed wall scattering: In-channel analysis

Mixed wall scattering: In-channel analysis at transition

At transition from wood to glass: A few ms later and the null has moved across the channel making this a hard demanding signal to equalize

Chi Sounding Ch Impulse Response 1: Ch2 Sounding Ch I

At transition from wood to glass: A strong reflection at 1 ns causes serious 20 dB fade mid-channel

BRISTC

10 11 -

Specular Reflection and Diffuse Scattering in mmWave

Plasterboard Wall (Smooth)

- The LoS is blocked and the user moves 2 meters away from the AP;
- Analogue beamforming: exhaustive search is exploited
- **AP**: 32 antenna elements and forms 64 beams;
- User: 8 antenna elements and forms 16 beams;
- **Specular reflection**: the signal power of the reflection path from a given surface is calculated using the Fresnel reflection formula;
- **Diffuse scattering**: the small-scale fluctuations on top of the mean signal power is modelled along a route as a function of a K-factor and a coherence distance;

💆 🌜 University of

MAGIC

- Rough wall: K-factor = -3dB and coherence distance < 1cm;
- Smooth wall: K-factor = 5dB and coherence distance = 5cm;

Specular Reflection and Diffuse Scattering in mmWave

© 2016 Keysight Technologies, Inc.

The mmWave paradigm shift

What we know well

RF Cellular (< 6 GHz) Here be dragons!

mmWave Cellular (> 28 GHz)

How **GOOD** is my signal?

WHERE is my signal?

Non-spatial requirements and cabled testing 3D spatial requirements and OTA testing

Testing OTA: The Cable is Gone Commercial mmWave bring Changing Paradigm in Test

- **Today**: mmW <u>Radiated Antenna</u> measurements solutions already exist for pure antenna characterization.
- Tomorrow: @ mmW <u>RF</u>
 <u>Parametric and Functional</u>
 <u>Performance need definition.</u>

OTA/Connectorless Testing Through the Development Cycle

Test Measurements	R&D	Design Verification	Conformance	Manufacturing
Near Field vs Far Field	Both	Far Field	Far Field	Both
Spatial (angular) vs Non-Spatial	Both	Both	Both	Limited spatial
Functional vs Parametric	Both	Both	Both	Parametric

Commercialization of an OTA/Connectorless Test Solution

- Cost effective
- Fast, accurate
- Support Beamforming and Beamsteering
- Easy to calibrate
- Compact
- Innovative, New Measurement Methodologies & Form Factors

Wake up and smell the...

CHANNEL Nº 5G

Thank you

HARDWARE + SOFTWARE + PEOPLE = INSIGHTS

