ADI Views on mmW 5G

JOHN KILPATRICK
SYSTEMS ARCHITECT
MICROWAVE COMMUNICATIONS GROUP
19 OCTOBER 2017
Agenda

► mmW 5G Goals
► Strategies to Achieve These Goals
► Beamforming
► mmW 5G Technical Challenges
► Architecture Discussion
Primary Goals for mmW 5G

- Higher throughput
- Higher capacity
- Higher spectral efficiency
- Less latency
- Lower power
5G Vision

IMMERSIVE EXPERIENCE
Enhanced Mobile Broadband

FOR EVERYTHING
Massive Machine Type Communication

INSTANT ACTION
Ultra Reliable Machine Type Communication

- Immersive entertainment and experiences
- Improved public safety and security
- More autonomous manufacturing
- Sustainable cities and infrastructure
- Reliable access to remote healthcare
- Efficient use of energy/utilities
- Digitized logistics and retail
How to Meet these Goals

► Build on 4G
 – OFDM-like Waveforms
 – Antenna Arrays

► Move to Higher Frequencies
 – Greater Bandwidth
 • More users; more throughput
 – Smaller Antennas
 • Allows higher antenna gains
 – Beamforming
 • Overcome higher path loss
 • Spatial isolation
 • Better use of spectrum

► Increase Integration
Beamforming Solutions

► Digital Beamforming (DBF)
- Pros
 - Most flexible
 - Most capacity
 - Steer multiple beams and nulls
- Cons
 - Very high power and cost of digital processing / transport
 - No spatial rejection from FE

► Analog Beamforming (ABF)
- Pros
 - Relatively low cost
 - Much lower DSP
 - Low power consumption
- Cons
 - Single beam
 - Single stream

► Hybrid Beamforming (HBF)
- Pros
 - More capacity than ABF
 - Much lower complexity / power than DBF
- Cons
 - Harder to perform MIMO processing
Array Size Optimization for 60 dBm EIRP

- Smaller arrays have less gain and therefore require more power per element
 - GaAs or GaN PAs dominate power consumption
 - DPD has large benefit

- Larger arrays have much higher gain and therefore require less power per element
 - Can be SiGe or CMOS (see green curves)
 - DPD has much smaller or even negative impact!

- Conclusion
 - With DPD: 64-128 elements
 - Without DPD: 128-256 elements
 - High power PA's not optimal!
Array Size Optimization for 70 dBm EIRP

Optimum array size
- With DPD: about 256 elements with ≤22 dBm PAs
- Without DPD: >512 elements with ≤20 dBm PAs
Five Significant Challenges for mmW 5G

► Reduce digital power consumption to enable more capacity and move towards DBF
 – Data converters
 – JESD lanes

► Wideband DFE processing
 – QEC and CFR
 – Spur reduction/cancellation

► Improve PA efficiency
 – Currently ~2-4% for each antenna element without DPD
 – How to perform DPD over N PAs in sub-array
 – Or comparable PA efficiency technique (envelope tracking, Doherty, …)

► Calibration of gain/phase to allow accurate beam steering and interference rejection
 – Within a sub-array
 – Between sub-arrays (to allow combining of sub-arrays)
 – Reduce or eliminate phase variation with gain (and gain variation with phase) to reduce calibration complexity
 – Phase synchronize multiple LO’s over M streams

► Shrink mmW electronics to fit in back of antenna array
 – λ/2 between 4-6 mm for the 25 – 39 GHz bands
Chipset Architectures

► HBF block diagram shown at right
► Macrocell may have individual chips for each function (including PA)
 – Many designs use a high IF configuration with digital board and microwave board
► CPE will support fewer (1?) stream and silicon PAs
► UE may have all functions integrated into one chip

► Can CPE chipset be used to construct Macro BTS?
► Will traditional PAs disappear from BTS designs?
Summary

► Full DBF at mmW still a number of years off (if ever!)
 – ADI actively investigating improved transceiver, converter and transport technologies

► HBF is currently most cost effective architecture to achieve mmW 5G goals
 – Different chipset architectures for the various use cases / applications
 – ADI has chipsets / technologies to form the complete HBF radio chain

► Looking to work with ecosystem partners and customers as the standards evolve toward high volume deployments
THANK YOU!